Beta Power Board

From apertus wiki
Revision as of 12:15, 20 November 2017 by RexOr (talk | contribs)
Jump to: navigation, search
PCB Top with components

1 About

V.01. of the Beta Power Board is the last PCB in the stack before the MicroZed™. It enerates all the different supply voltages for the chips and logic on the other PCB’s inside the camera. It also monitors currents so that it can estimate remaining power based on the recorded consumption. In the current revision of the camera a predefined set of supply voltages matching the current application with the rest of the camera have been generated, in the future however, it will be possible for users to dynamically reconfigure voltages according to their needs through the camera’s software.


2 Planned Changes for V2

  • DC barrel connector attached directly to the PB with a cable
  • mechanical trimmer (discontinued) replacement -> switching regulators with digital voltage control
  • PICO SPOX power input connector will be moved "into" the PB so the cable can be routed inside the camera enclosure towards the backside
  • RGB LED and pushbutton (ALPS SKSNLAE010 currently considered) moved from smart power adapter to PB (top side, north east)


3 Revisions

Current: AXIOM Beta Power Board v0.30




Archive:

AXIOM Beta Power Board v0.25

axiom beta power board v0.23

axiom beta power board v0.22 test

axiom beta power board v0.17 test

axiom beta power board v0.11 test

axiom beta power board v0.8 test

axiom beta power board v0.9 test


4 Calibrating Voltages

This describes the process required when factory assembling the power board hardware in the AXIOM Beta stack.


./power_init.sh
./power_on.sh

wait a bit

./pac1720_info.sh

This will output something like:

ZED_5V          4.8828 V [1f40]         +10.1562 mV [104]   +677.08 mA
BETA_5V         4.8828 V [1f40]          +1.2891 mV [021]    +85.94 mA
HDN             3.2812 V [1500]          +0.0000 mV [000]     +0.00 mA
PCIE_N_V        3.2422 V [14c0]          +0.0000 mV [000]     +0.00 mA
HDS             3.2031 V [1480]          +0.0000 mV [000]     +0.00 mA
PCIE_S_V        3.2422 V [14c0]          +0.0000 mV [000]     +0.00 mA
RFW_V           3.2422 V [14c0]          -0.0391 mV [fff]     -2.60 mA
IOW_V           3.2617 V [14e0]          +0.0000 mV [000]     +0.00 mA
RFE_V           3.2422 V [14c0]          +0.0000 mV [000]     +0.00 mA
IOE_V           3.2812 V [1500]          +0.0000 mV [000]     +0.00 mA
VCCO_35         2.4219 V [ f80]          -0.0391 mV [fff]     -2.60 mA
VCCO_13         2.4609 V [ fc0]          +0.0000 mV [000]     +0.00 mA
PCIE_IO         2.4609 V [ fc0]          -0.0781 mV [ffe]     -5.21 mA
VCCO_34         2.4609 V [ fc0]          +0.9766 mV [019]    +65.10 mA
W_VW            2.7734 V [11c0]          +0.0000 mV [000]     +0.00 mA
N_VW            2.8125 V [1200]          +0.0000 mV [000]     +0.00 mA
N_VN            2.7734 V [11c0]          -0.0391 mV [fff]     -2.60 mA
N_VE            2.8516 V [1240]          +0.0000 mV [000]     +0.00 mA
E_VE            2.6953 V [1140]          -0.0391 mV [fff]     -2.60 mA
S_VE            2.8516 V [1240]          +0.0000 mV [000]     +0.00 mA
S_VS            2.7344 V [1180]          -0.0391 mV [fff]     -2.60 mA
S_VW            2.8516 V [1240]          -0.0781 mV [ffe]     -5.21 mA

now run:

watch -n 0.2 ./pac1720_info.sh

which will display the voltages in a clear screen and constantly update the values until you press CTRL+C

The PCB labels and the labels in the CLI correspond like the following:

WW = W_VW
NW = N_VW
NN = N_VN
NE = N_VE
SW = S_VW
SS = S_VS
SE = S_VE
EE = E_VE

Use a tiny screwdriver and adjust the trimmers on the PCB until your values look like this:

W_VW          	2.4609 V [ fc0] 	 -0.0391 mV [fff]     -2.60 mA
N_VW          	3.2422 V [14c0] 	 +0.0000 mV [000]     +0.00 mA
N_VN          	1.8750 V [ c00] 	 -0.0391 mV [fff]     -2.60 mA
N_VE          	3.2617 V [14e0] 	 +0.0000 mV [000]     +0.00 mA
E_VE          	3.2812 V [1500] 	 +0.0391 mV [001]     +2.60 mA
S_VE          	1.9922 V [ cc0] 	 +0.0000 mV [000]     +0.00 mA
S_VS          	2.9883 V [1320] 	 -0.0391 mV [fff]     -2.60 mA
S_VW          	1.9531 V [ c80] 	 -0.1172 mV [ffd]     -7.81 mA