AXIOM Beta/Enclosures

From apertus wiki
Jump to: navigation, search

The AXIOM Beta Developer Kit (ABDK) has a skeleton framework instead of an enclosure allowing easy access to the electronics but at the same time providing a strong and solid link between hardware, lens mount and tripod mount base. This is great for developers and in lab conditions so there are several sub-projects that focus on adding a protective enclosure (shell) around this skeleton.

1 Simple Enclosure

The Simple Enclosure is meant to wrap a "skin" around the camera's electronics and CNC milled metal skeleton parts. The Simple Enclosure is designed in a way that can be produced with any consumer 3d printer. The design is not finished yet, please help finish and test it.

https://cad.onshape.com/documents/15b58e5500d917fd327e95ef/w/7ed95a699b599a370a7f55ff/e/f97fa229ef96cd1e6d0c4a40


2 Transparent Enclosure

A transparent enclosure is useful for showcasing the camera's printed circuit boards and for allowing to understand quickly what may or may not be going on simply by looking at the camera's status LEDs. The design is made so it can be laser cut with a 3mm thick acrylic glass. Acrylic glass comes is many variations and colors and could also be used to print logos or text labels on the exterior.


Simple transparent enclosure for the AXIOM Beta, version 0.2.


Beta-simple-transparent-enclosure v0.2.svg



Key : Black => to be cut ; Red => to be engraved ; Green => comments (not to be cut or engraved)

Open and edit the above image with Inkscape or similar.



Lase Cut Clear 03 sm b.jpg

Note: There may be scope for improvement by making the case slightly bigger (few mm wider for the front and back side), so that the HDMI cable can fit nicely in the enclosure (and you don't need to shave some plastic off the cable). If you make any alterations please update this page with modifications accordingly.



2.1 Distance between Image Sensor and first PCB

Note that there are two versions of the Image Sensor Frontend with different image sensor to PCB distances. The transparent enclosure has been designed for the ZIF (CPU Socket) variant of the Sensor Frontend.

Axiom-beta-image-sensor-distances.png


2.2 Heat Dissipation

Tests have shown that this transparent enclosure makes the Zynq on the microzed prone to overheating (due to the lack of air circulation) which creates general erratic camera behavior. Other parts in the camera can get too hot as well of course. A newer design with a larger fan on top of the enclosure has shown significant improvements to keeping the Zynq on a constant temperature.

"Case" is the above laser cut transparent enclosure
"Open" refers to the developer kit without enclosure
"Chimney" an intermediate design improvement attempt
"2xFan" a further improved design with a smaller fan on the microzed and a big fan at the top of the PCB stack
"final" the final improved design with a big fan at the top of the PCB stack but no fan on the microzed heatsink (see below)

Case power.png Case sensor.png Case ddr.png Case zynq.png


In a closed case it's all about the air flow, so you need to carefully consider where the air enters and leaves the case. Ventilating out through holes above the fan is recommended. It's best to make a sort of wind-tunnel effect if you like. If you simply put a few 'holes' at the back and have a gap between fan and case, the hot air will mostly circulate inside the case, which is not what you want.

It's also recommended to measure various temperatures on the camera and monitor them during use with and without case.

To get a reading of Zync temperature:

$ ./zynq_info.sh will give you the zynq temp, 


To get a reading of Power Board temperature:

$ cat /sys/class/hwmon/hwmon0/temp[0-9]_input


To get a reading of the Sensor's temperature

$ cmv_reg 127 


The zynq will work relatively fine up to 90°C, although that is a little high for normal use. For the sensor, you want to keep temperature quite low, typically not more than a few degrees above room temperature, so adding holes or slits close to the sensor is a good idea.

Always keep in-take holes/slits at the bottom or at least bottom side, because it aids natural convection. As a rule of the thumb, for intake you want to have about 1.5-2x the area you have for the exhaust (in total, which is the inside area of the fan). If you have too little intake, the fan gets slowed down, if you have to much, cooling will be ineffective.

3 Transparent/3D Printed Enclosure

This is the improved version based on the transparent enclosure (above) and designates some of the enclosure sides to be 3D printed instead of laser cut. It adds a StarTech FAN6X1TX3 60x60x10mm at the top of the enclosure which solve the above mentioned heat dissipation problems.

Improved transparent enclosure front.jpg Improved transparent enclosure back.jpg

Instructions:

  1. laser cut acrylic sheets as defined in axiombetatransparentplot.top60x60fan.svg (all plates, except the "top" and the back side)
  2. 3D print the 2 STL files
  3. assemble them all together
  4. strap a StarTech FAN6X1TX3 60x60x10mm cooler fan to the top plate and connect it to the FAN connector on the MicroZed
  5. each two opposite plates are to be held together by one or more Φ 3 mm threaded rods together with the corresponding nuts (locknuts can be considered for this application - https://en.wikipedia.org/wiki/Locknut - but have not been tested yet) mounted on the exterior on each side. For the back and the front plate the rods are the same four that hold together the PCBs and the skeleton mount, albeit longer ones will be required (min 7.7 cm). For the left and right plate there the current implementation requires only one Φ 3 mm threaded rod of aprox 15 mm in length. In the current version the holes for the threaded rod in the top and bottom plate require adjustments & are misaligned, but it will be fixed in the next version (however, tests show that the enclosure holds together just fine with just the left-right & front-back rods). No shock/vibration tests have been run on it, so consider this unexplored space.

Download: File:Transparent-3d-print-enclosure.zip

4 AXIOM Beta Compact Enclosure

The AXIOM Beta Compact is designed to be CNC milled from aluminum and then ceramic coated or anodized

Design still in progress - not finished yet.

All dimensions are in millimeter.

Labels/logos will be pad printed.

For detailed specifications and part numbers for individual components see 10-Enclosures and Associated Mechanical Parts

10-CEEM Stack- ABCP Enclosure E-Mount.jpg

Latest designs are in this Onshape 3D CAD project: https://cad.onshape.com/documents/0e2510289c094498d83e1212/w/915b3a711de36102371778be/e/5505fab1dbb24db8b6f43eab

Onshape is a CAD design software that is entirely browser based which is great for collaboration in an open source project - also they made it free as long as you only need public designs - which is what we want anyways in an open source project.


4.1 Open TODOs:

low priority:

  • design rod support base (optional, no priority at the moment)
  • Air Filter related decisions at top and bottom - separate evaluation/measurement device design finished


high priority:

  • design plugin module enclosure concept that can be used/adapted for any length plugin modules (standing out of the back of the compact enclosure)
  • prototype side pates when image sensor to Sensor Board distance is set/measured
  • rubber feet for cap bottom (this one? https://www.tme.eu/at/details/fix-sf-070620/beine/fix-fasten/ )?
  • verify emount unlock pin spring and movement length
  • shorten enclosure at the back (2mm)?
  • calculate thermal expansion of lens assembly

4.2 E mount FFD verification

ABTDLnsFFD01 AXIOM Beta E-Mount FFD Verification.png

Distance Notes:

  • Spring ring under bayonet: 0.3mm thickness
  • Sensor CMOS surface to outer front plate surface: 6.75mm (new: 4.75mm) + 0.244mm (delta from cover glass)
  • every filter holder thickness should be 2mm + own filters delta (the assembly always requires two filter holders in place for the correct FFD)
  • shimming should account for 0.15mm in the FFD

4.3 Cooling and Airflow

At the top of the AXIOM Beta Compact enclosure in the "Cap Top" part there is a 60x60x10mm fan. By using a larger fan we can spin it slower which makes it more silent in operation. Pulling air in and pushing it out (with the fan at the exit) is in general a more silent approach then pushing the air in at an entrance. The fan pushes hot air out at the top. The air enters the enclosure at the bottom ventilation holes and flows through the electronics. As heat rises this natural motion is supported by the fan.

60x60fan-top-cap.jpg

Since there are many more 12V 60x60x10mm fans than 5V versions we are considering PWM with a voltage doubler circuit to go from 5V -> 10V.

The fan is held in place by 4x M3x5 socket head screws.

There is a thin layer of PVC with fine hole grid as filter between the fan and the aluminum.

Image sensor cooling is envisioned with a custom two part heatsink attached to the back of the image sensor with a heat conductive foam: a silicon rubber thermal pad with 0.5mm thickness, 5-6 W/mK is desired - eg. https://www.amazon.com/200x200x0-5mm-Conductivity-Conductive-Insulation-temperature/dp/B075JCQPD2 or https://www.ebay.de/itm/Arctic-0-5MM-Warmeleitpad-145x145mm-6W-mK-GPU-Gap-Filler-ThermalPad/121997756698 -"arctic" seems to be a common brand name

Heatsink elements should be anodized according to https://www.gabrian.com/anodized-aluminum-heatsinks-what-you-need-to-know/ as this increases the surface emissivity.

4.4 Filter Holders

The default stack now contains two optical filter holders:

  • 1x UV/IR cut off filter
  • 1x empty (to provide space for adding a second filter later on)

Each filter holder features two orientation pins to prevent being inserted in a wrong orientation. These orientation pins also act as shim holder.

Each filter holders thickness is 2mm by default plus the FFD delta as a result of the filter holders own filter thickness/density. So in reality an optical filter holder will be something like 2.15 or 2.34mm thick depending on the glas element it holds.

The filter holder incorporates a rubber gasket ring with 1.5mm thickness and 58mm outer diameter, 55mm inner diameter corresponding to a ring length of 177.5mm. (eg. https://www.ebay.com/itm/10x-Metric-Nitrile-Rubber-NBR-O-Ring-Seals-Washers-Cross-Section-1-5mm-OD-5-80mm/173895045434) This gasket seals the holder towards the image sensor side.

4.5 IR/UV Cut-off Filter

The visible spectrum that humans can see ranges from 380 - 750 nm.

Currently we are shipping Dev Kits with Haida Pro II MC Digital Slim UV / IR 390nm / 750nm filters.

Hoya filters offer a narrower band of 390 nm - 700 nm - will need to be tested how it impacts less red tones.

http://www.optics-online.com/IRC.asp?PN=IRC30-50x50 50x50mm for 39$ for sample (volume pricing likely lower and on request), 1.5mm thickness

UQG Optics offer 40x40x1.1mm UV/IR Cut off filters with 400 - 690nm bandpass

4.6 Thread Inserts

We decided to use thread inserts for all external attachment points (1/4" and 3/8") instead of cutting threads into the aluminum directly. This is a bit more expensive but the threads are stronger, easier to replace in case any of them wear or get damaged over time so its better for repair-ability. We opted for steel helicoils as thread inserts.


4.7 AXIOM Shell

features this cold shoe: https://camvate.en.alibaba.com/product/60759856560-806884690/2018_Aluminum_Alloy_hot_shoe_mount_adapter_with_1_4_20_Thread.html

5 Enclosures and Temperatures

In a closed case it's all about the air flow, so you need to carefully consider where the air enters and leaves the case. Ventilating out through holes above the fan is recommended. It's best to make a sort of wind-tunnel effect if you like. If you simply put a few 'holes' at the back and have a gap between fan and case, the hot air will mostly circulate inside the case, which is not what you want.

It's also recommended to measure various temperatures on the camera and monitor them during use with and without case.

./zynq_info.sh 

... will give you the zynq temp,


cat /sys/class/hwmon/hwmon0/temp[0-9]_input 

... will give you power board temp


cmv_reg 127 

... will give the temperature of the sensor.


The zynq will work relatively fine up to 90°C, although that is a little high for normal use. For the sensor you want to keep temperature quite low - typically not more than a few degrees above room temperature, so adding holes or slits close to the sensor is a good idea.

Always keep in-take holes/slits at the bottom or at least bottom side, because it aids natural convection. As a rule of the thumb, for intake you want to have about 1.5-2x the area you have for the exhaust (in total, which is the inside area of the fan). If you have too little intake, the fan gets slowed down, if you have to much, cooling will be ineffective.


6 General Enclosure Design Topics

From Labs:

Weatherproof Enclosure

Axiom Beta new enclosure and labeling

Select Enclosure Feet

AXIOM Beta Workboard




7 Legacy

Body Design Options

Cooling

Switchable ND Filters not planned currently